6 research outputs found

    Experimental Comparison and Evaluation of the Affymetrix Exon and U133Plus2 GeneChip Arrays

    Get PDF
    Affymetrix exon arrays offer scientists the only solution for exon-level expression profiling at the whole-genome scale on a single array. These arrays feature a new chip design with no mismatch probes and a radically new random primed protocol to generate sense DNA targets along the entire length of the transcript. In addition to these changes, a limited number of validating experiments and virtually no experimental data to rigorously address the comparability of all-exon arrays with conventional 3'-arrays result in a natural reluctance to replace conventional expression arrays with the new all-exon platform.Using commercially available Affymetrix arrays, we assess the performance of the Human Exon 1.0 ST (HuEx) and U133 Plus 2.0 (U133Plus2) platforms directly through a series of 'spike-in' hybridizations containing 25 transcripts in the presence of a fixed eukaryotic background. Specifically, we compare the measures of expression for HuEx and U133Plus2 arrays to evaluate the precision of these measures as well as the specificity and sensitivity of the measures' ability to detect differential expression.This study presents an experimental comparison and systematic cross-validation of Affymetrix exon arrays and establishes high comparability of expression changes and probe performance characteristics between Affymetrix conventional and exon arrays. In addition, this study offers a reliable benchmark data set for the comparison of competing exon expression measures, the selection of methods suitable for mapping exon array measures to the wealth of previously generated microarray data, as well as the development of more advanced methods for exon- and transcript-level expression summarization

    Explaining differences in saturation levels for Affymetrix GeneChip® arrays

    Get PDF
    The experimental spike-in studies of microarray hybridization conducted by Affymetrix demonstrate a nonlinear response of fluorescence intensity signal to target concentration. Several theoretical models have been put forward to explain these data. It was shown that the Langmuir adsorption isotherm recapitulates a general trend of signal response to concentration. However, this model fails to explain some key properties of the observed signal. In particular, according to the simple Langmuir isotherm, all probes should saturate at the same intensity level. However, this effect was not observed in the publicly available Affymetrix spike-in data sets. On the contrary, it was found that the saturation intensities vary greatly and can be predicted based on the probe sequence composition. In our experimental study, we attempt to account for the unexplained variation in the observed probe intensities using customized fluidics scripts. We explore experimentally the effect of the stringent wash, target concentration and hybridization time on the final microarray signal. The washing effect is assessed by scanning chips both prior to and after the stringent wash. Selective labeling of both specific and non-specific targets allows the visualization and investigation of the washing effect for both specific and non-specific signal components. We propose a new qualitative model of the probe-target hybridization mechanism that is in agreement with observed hybridization and washing properties of short oligonucleotide microarrays. This study demonstrates that desorption of incompletely bound targets during the washing cycle contributes to the observed difference in saturation levels

    Quantitative Expression Profiling in Formalin-Fixed Paraffin-Embedded Samples by Affymetrix Microarrays

    No full text
    To date, few studies have systematically characterized microarray gene expression signal performance with degraded RNA from fixed (FFPE) in comparison with intact RNA from unfixed fresh-frozen (FF) specimens. RNA was extracted and isolated from paired tumor and normal samples from both FFPE and FF kidney, lung, and colon tissue specimens and microarray signal dynamics on both the raw probe and probeset level were evaluated. A contrast metric was developed to directly compare microarray signal derived from RNA extracted from matched FFPE and FF specimens. Gene-level summaries were then compared to determine the degree of overlap in expression profiles. RNA extracted from FFPE material was more degraded and fragmented than FF, resulting in a reduced dynamic range of expression signal. In addition, probe performance was not affected uniformly and declined sharply toward 5′ end of genes. The most significant differences in FFPE versus FF signal were consistent across three tissue types and enriched with ribosomal genes. Our results show that archived FFPE samples can be used to profile for expression signatures and assess differential expression similar to unfixed tissue sources. This study provides guidelines for application of these methods in the discovery, validation, and clinical application of microarray expression profiling with FFPE material
    corecore